【高校数学】”メネラウスの定理”の公式とその証明

mathematics高校数学

“メネラウスの定理”の公式とその証明です!

スポンサーリンク

メネラウスの定理

公式

メネラウスの定理
メネラウスの定理

直線lとBC、CA、ABの交点をそれぞれP、Q、Rとすると
  \(\frac{BP}{PC}・\frac{CQ}{QA}・\frac{AR}{RB}=1\)

証明

面積比による証明

証明
メネラウスの定理証明
△BPQと△PCQは高さが同じであるため面積比は
△BPQ:△PCQ=BP:PC
⇒\(\frac{BP}{PC}=\frac{△BPQ}{△PCQ}\)    ①
△PCQと△PAQは底辺QPを底辺とするとそれぞれの高さはCQ:QAの関係にあるため
△PCQ:△PAQ=CQ:QA
⇒\(\frac{CQ}{QA}=\frac{△PCQ}{△PAQ}\)     ②
また△PAQと△BPQは底辺QPを底辺とするとそれぞれの高さはAR:RBの関係にあるため
△PAQ:△BPQ=AR:RB
⇒\(\frac{AR}{RB}=\frac{△PAQ}{△BPQ}\)    ③
①、②、③の積より
\(\frac{BP}{PC}・\frac{CQ}{QA}・\frac{AR}{RB}=\frac{△BPQ}{△PCQ}・\frac{△PCQ}{△PAQ}・\frac{△PAQ}{△BPQ}=1\)
よって
\(\frac{BP}{PC}・\frac{CQ}{QA}・\frac{AR}{RB}=1\)

問題

Q

図のPCを求めよ

A

メネラウスの定理より
\(\frac{BP}{PC}・\frac{3}{4}・\frac{3}{6}=1\)
\(\frac{5+PC}{PC}・\frac{3}{4}・\frac{3}{6}=1\)
\(9(5+PC)=24PC\)
\(45=15PC\)
⇒\(PC=3\)となります.

まとめ

三角形に直線が交わっている場合はメネラウスの定理が使えることもあるので,しっかりと使えるようにしておきましょう.

数Aの公式一覧とその証明